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Abstract 

A theoretical and experimental investigation of thermal 

conductance of two-dimensional constrictions has been carried 

out for both symmetrical and eccentric constrictions. Ana- 

lytical solutions for both of these cases have been obtained. 

The solutions have been presented in terms of dimensionless 

numbers - a conductance number and a constriction number for 
the symmetrical case, and additionally an eccentricity 

number for the eccentric case. A series of experiments have 

been run by making use of the electrical analogy. Good 

agreement has been found between the theories and experiments. 

The results have also been compared with previously reported 

experiments and theories. 

Introduction 

When heat flows through a constriction, a thermal 

resistance (or conductance) develops because of the con- 
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vergence and divergence of the flow lines at and near the 

constriction. This resistance is usually quite high com- 

pared to the resistance offered to heat flow away from the 

constriction. For a reliable heat transfer analysis of a 

given system, such constriction resistances must be accurately 

predicted in addition to other parameters. Especially, as 

need for more dependable systems grows in aerospace, nuclear 

and other industries, it is becoming increasingly necessary 

for designers to be able to predict the thermal constriction 

resistances or conductances with greater accuracy. 

conductance of three dimensional constrictions has been 

extensively investigated, presumably because of the fact 

that it arises in the thermal conductance of contacts - a 

subject which has received wide attention (1'2'3) in the last 

twenty years. In contrast, the problem of the thermal con- 

ductance of two-dimensional constrictions has received little 

attention. 

perimental and theoretical study of electrical constriction 

resistances. Using a simplified model they derived a 

relationship - containing an experimentally determined para- 
meter - for the symmetrical two-dimensional constriction 
resistances, and also a relationship for the percentage 

increase in resistances of eccentric constrictions. Mikic 

and Rohsenow(6) obtained theoretical expressions, in the form 

of infinite series, for symmetrical two-dimensional constriction 

resistances for two different heat flux distributions at 

the constriction. In practice, the two-dimensional constriction 

Thermal 

Kouwenhoven and Sackett (4 ' 5, carried out an ex- 
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conductance arises i n  h e a t  t r a n s f e r  a t  f i n  bases, i n  h e a t i n g  

a material  by means of an e lec t r ic  r e s i s t a n c e ,  i n  c o o l i n g  

a w a l l  by means of a f l u i d  c i r c u l a t i n g  i n  t u b e s  (see F igure  l ) ,  

and i n  s i m i l a r  s i t u a t i o n s  wherever t h e  c o n s t r i c t i o n  i s  t w o -  

d imensional .  I t  even arises i n  t he rma l  c o n t a c t  conductances 

when one of t h e  c o n t a c t  s u r f a c e s  h a s  a two-dimensional rough- 

n e s s  and t h e  other i s  r e l a t i v e l y  smooth. 

The p r e s e n t  work p rov ides  a t h e o r e t i c a l  and exper imenta l  

s tudy  of t h e  s u b j e c t  for  bo th  symmetrical  and e c c e n t r i c  con- 

s t r i c t i o n s .  The s o l u t i o n s  a r e  expressed  i n  t e r m s  of dimen- 

s i o n l e s s  numbers. 

reported exper imenta l  data and theories. 

The r e s u l t s  are  compared wi th  the p r e v i o u s l y  

Theory 

F i r s t  a s o l u t i o n  f o r  the thermal conductance of two- 

d imens iona l  c o n s t r i c t i o n s  w i l l  be o b t a i n e d  f o r  the symme- 

t r i c a l  case, i . e . ,  when t h e  symmetry a x e s  of b o t h  the hea t  

channe l  and t h e  c o n s t r i c t i o n  c o i n c i d e ,  and t h e n  the  e c c e n t r i c  

case w i l l  be s t u d i e d .  

Symmetrical  C o n s t r i c t i o n  

F ig .  2 s h o w s  t h e  s t e a d y  s ta te  isotherms and heat f l o w  

l i n e s  for  a two-dimensional symmetrical c o n s t r i c t i o n .  The 

h e a t  f l o w  channel  width i s  2a,  the c o n s t r i c t i o n  width 2b ,  

and t h e  channel  t h i c k n e s s  t .  Because of the symmetry, it 

w i l l  s u f f i c e  t o  c o n s i d e r  o n l y  one of  t h e  q u a r t e r  p l a n e s ,  

e .g . ,  t h e  one bounded b y  p o s i t i v e  x and p o s i t i v e  y a x e s .  

The s t e a d y  s t a t e  temperature d i s t r i b u t i o n  m u s t  s a t i s f y  the 



Laplace's equation, 

and the following boundary conditions, 

aT (-) = 0 
'*x=a 

aT (-) = 0 
ayy=o 

............ (2) 

o < y < = J  

o < y < m  

b < x < a  

The temperature distribution satisfying equation (1) and 

the conditions (2) can be obtained from a very simple, 

linear, temperature distribution by means of two conformal 

transformations. Fig. 3 illustrates these transformations. 

Consider the quarter flow channel having no constriction 

and bounded by x = 0 ,  X = a, and Y = o lines in the complex 

Z plane (Fig. 3a). For heat flow along the channel, the 

steady state temperature distribution is given by 

T = mY ..................................... 3 )  

where m is a constant. Equation (3 )  satisfies the Laplace's 

equation and the boundary conditions of, 

aT (--)= 0 
%O 

'T (-)= 0 
a%=a 

I o < Y e Q) or along OP 

(T) = 0 (Constant) 0 < X < a or along OQ 
Y=0 J 
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The constant temperature along x axis has been taken as 
zero for convenience. 

The region PoQR of the complex Z plane can be trans- 

formed into the region PoQR of the complex w plane (see 

Fig. 3b) by means of the conformal transformation of, 

w = b sin(2a) n Z  ................................... 5 )  

which preserves the Laplace's relationship and the boundary 

conditions along the transformed boundaries. Writing 

Z = X + iY and w = u + iv in the transformation relation- 
ship (5) and considering the real and imaginary terms, one 

obtains, 

u = b sin(x)cosh(E) nX YCY ............................ (6) 

*X YIY 2a) (7) v = b cos(-)sinh(- ............................ 2a and 

Eliminating X between equations (6) and (7) and solving 

for Y, 

............... (8) a Y = - cash 
I-( 

Substituting equation (8) in ( 3 )  , the temperature distribution 
T in the transformed region becomes, 

.............. (9) 
2 2  -1 u +V f cosh { ma T = -  

fi 

Now the region PoQR of the complex w plane can be trans- 

formed into the region PoQSR of the complex z plane (see 

Fig. 3c) by means of the conformal transformation of, 

sin (e) 
sin (-) 

..............................( 10) 2a 
n b  
2a 

w = b  
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which also preserves the Laplace's relationship and the 

boundary conditions along the transformed boundaries. 

The transformed boundaries and the boundary conditions 

are exactly those of the original problem posed. From 

equation (lo), the following transformation relationships 

for the co-ordinates are obtained, 

sin (s) cosh (g) (11) 
b 
nb 
2a 

.................. u =  
sin (-) 

b cos\z) YtX sinh(E) (12) v =  .................. rrb 
2a sin (-) 

Substituting equations (11) and (12) in (9), and writing 

the trigonometric and hyperbolic functions in terms of 

double angles or arguments, the steady state temperature 

distribution in a constant width flow channel with a symme- 

trical constriction becomes, 

~ s ( Y  - cash(=) a 
nb 
a 

cosh ma T = -  
1 - cos (-) n 

* 
lcos 2 (r) fib +cos 2 z  ( a ) +cosh2 (2) -2cos (+) cos (F) cosh (=) -1 
f a 

nb 
a 1 - cos(-) 

The thermal resistance introduced as a result of the 

defined as, 

............. (14) 
produced by 

the channel. 

constriction in the heat flow channel can be 

- -  ATC ................... R c -  H 

where ATc is the additional temperature drop 

the constriction and H the heat flow rate in 

The temperature drop ATc can be calculated from, 
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= L i m i t  I T  - y 1 .................... (15) 
Y-, 

ATC 

I n  t h i s  e q u a t i o n  the f i r s t  t e r m  w i t h i n  t h e  b r a c k e t s  rep- 

r e s e n t s  the a c t u a l  t empera tu re  drop between y=w and y=o 

( c o n s t r i c t i o n )  and t h e  second t e r m  t h e  t empera tu re  d r o p  

between t h e  same t w o  p o i n t s  i f  t h e r e w e r e  no  c o n s t r i c t i o n .  

S u b s t i t u t i n g  e q u a t i o n  (13) i n  (15) and t a k i n g  the l i m i t ,  

t h e  c o n s t r i c t i o n  t empera tu re  drop becomes, 

= * I n  { 1:: } ........................ (16) 
s i n  (-) ATc x 

The heat f l o w  ra te  H can  be c a l c u l a t e d  from, 
aT H = (channel  C. S. A . )  (Thermal C o n d u c t i v i t y )  (-) 
ayy,m 

aT or H = 2 a t  k(-) ........................... (17) 
ayy,w 

From e q u a t i o n  (13), the t empera tu re  s l o p e  a t  ys" i s ,  

aT .................................. (-1 = m (18) 
ayy,w 

S u b s t i t u t i n g  e q u a t i o n  (18) i n  (17), the heat  f l o w  rate 

becomes, 

H = 2amtk .............................. (19) 

S u b s t i t u t i n g  e q u a t i o n s  (16) and (19) i n  (14), the the rma l  

c o n s t r i c t i o n  r e s i s t a n c e  ( f o r  one side o f  the c o n s t r i c t i o n )  

i s  found t o  be, 

- .............. :. .. . (20) Rc - n k t  In [ s i n  (- fib,) 
2a 

The c o n s t r i c t i o n  conductance per u n i t  area of  the f l o w  

c h a n n e l ,  by d e f i n i t i o n ,  i s ,  

u =  (Channel C. S .A.  ) Rc 
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or 
nk ....................... (21)  1 u =  

2a In( s i n  . (- nb,) 
2a 

T h i s  r e s u l t  can be reduced t o  a r e l a t i o n s h i p  between t w o  

d imens ion le s s  numbers. Defining a c o n s t r i c t i o n  conductance 

number U and a c o n s t r i c t i o n  number C as ,  

(22)  u (Channel width) - - 2au .............. k - k  u =  

and C o n s t r i c t i o n  Width - - - -  2b b - c =  Channel Width - 2a a ............ (23) 

and combining e q u a t i o n s  (22)  and (23) w i t h  (21), the fo l lowing  

r e l a t i o n s h i p  i s  o b t a i n e d ,  
n ........................ (24) 1 u =  

l f s i n ( 3 )  j 
E c c e n t r i c  C o n s t r i c t i o n s  

F ig .  4 s h o w s  a two-dimensional e c c e n t r i c  c o n s t r i c t i o n .  

The dimensions of t h e  h e a t  f low channel  are the same as those 

of the symmetrical case, except  f o r  the new dimension of 

e c c e n t r i c i t y  e ,  the d i s t a n c e  between the c e n t e r - l i n e  of t h e  

heat f l o w  channel  and the c e n t e r - l i n e  of t h e  c o n s t r i c t i o n .  

I n  t h i s  case, the s t e a d y  s ta te  t empera tu re  d i s t r i b u t i o n  m u s t  

s a t i s f y  the L a p l a c e ' s  equa t ion  and t h e  fo l lowing  boundary 

c o n d i t i o n s  f o r  the C a r t e s i a n  co -o rd ina te  system geometry 

s e l e c t e d ,  

0 Y - (25) aT ................. (-) = 0 
aXX=O 

3T 0 c y < O3 ................. (26) (ax' = 0 
x=2a 



(-) = 0 a +e +b<x<a +e-b .................. ( 2 7 1 aT 
ayy=o 

= Constan t  a+e-boc<a+e+b ................. (28)  (T) y=o 

T h e  tempera ture  d i s t r i b u t i o n  which satisfies the L a p l a c e ' s  

e q u a t i o n  and t h e  boundary c o n d i t i o n s  (25) and (26) i s  g iven  

where m i s  the temperature s lope  a t  y=a and Bn a c o n s t a n t ,  

dependent  on the number n.  I t  i s  d i f f i c u l t  t o  s a t i s f y  mixed 

boundary c o n d i t i o n s ,  such as  given by e q u a t i o n s  (27) and ( 2 8 ) ,  

a tempera ture  s l o p e  c o n d i t i o n  and a temperature c o n d i t i o n  

r e s p e c t i v e l y .  I n  o r d e r  t o  overcome t h i s  d i f f i c u l t y ,  the  

temperature boundary c o n d i t i o n  (28)  w i l l  be rep laced  b y  a 

temperature slope boundary c o n d i t i o n ,  i n  a way s i m i l a r  t o  

t h a t  used  by  Mikic and Rohsenow (6) f o r  the  symmetrical con- 

s t r i c t i o n s .  I f  q i s  the f l u x  a long  the  c o n s t r i c t i o n  i n  t h e  

n e g a t i v e  y d i r e c t i o n ,  the new boundary c o n d i t i o n ,  r e p l a c i n g  

c o n d i t i o n  ( 2 8 ) ,  becomes, 

a+e-bot<a+e+b ............ (30) 

The tempera ture  s l o p e  a t  y=o i s  found f r o m  equa t ion  (29) t o  

nnx (2) = m -E 2 Bn cos(-) .................. (31) 2a ayy=0 n = l  

I n  the d e t e r m i n a t i o n  of t h e  c o n s t a n t s  Bn s a t i s f y i n g  

t h e  boundary c o n d i t i o n s  (27) and (31), b o t h  sides of e q u a t i o n  

(31) are m u l t i p l i e d  b y  c o s ( T ) d x  and i n t e g r a t e d  f r o m  x=o t o  
n fix 
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x=2a by s u b s t i t u t i o n  of the d e f i n e d  t empera tu re  slopes, and 

the  f o l l o w i n g  r e s u l t  i s  o b t a i n e d ,  
a+e+b I cos (-)ax = - - n n  B .............. (32) 

nnx 
2a 2 n  

a+e-b 

An assumption of uniform f l u x  d i s t r i b u t i o n  over the  con- 

s t r i c t i o n  g i v e s ,  

o r  

H e a t  F l o w  R a t e  i n  Channel 

2atmk 
q =  C o n s t r i c t i o n  A r e a  

- -  amk - (33) ........................ = 2 b t  

S u b s t i t u t i n g  e q u a t i o n  (33) i n  (32) and c a r r y i n g  o u t  the 

i n t e g r a t i o n ,  one  o b t a i n s ,  
L 

(34) ........... 8a m s i n  (-1 nnb cos  [ g ( a + e j  
2 2  2a Bn= - 

n n b  

S u b s t i t u t i n g  e q u a t i o n  (34) i n  (29 ) ,  the  t empera tu re  d is t r i -  

b u t i o n  becomes, 

T = m y -  nrrx 
2 a  

n = l  

T h e  a d d i t i o n a l  t empera tu re  drop ATc produced as a r e s u l t  

of the c o n s t r i c t i o n  i s  g i v e n  by ,  

................... = L i m i t  Iy(s) ayy== - T] (36) 
Y* 

ATC 

The a p p a r e n t  d i s c r e p a n c y  between t h i s  e q u a t i o n  and e q u a t i o n  

f o r  d e t e r m i n i n g  the  c o n s t r i c t i o n  t empera tu re  drops, i s  caused  

(15), 

by the fact  t h a t  i n  the  t empera tu re  d i s t r i b u t i o n  used i n  

e q u a t i o n  (15) the  c o n s t r i c t i o n  t empera tu re  w a s  selected t o  be 

c o n s t a n t  (zero)  whereas i n  the t empera tu re  d i s t r i b u t i o n  used i n  

e q u a t i o n  (33) the t e m p e r a t u r e s  fa r  away (y==) f r o m  the c o n s t r i c t i o n  
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are taken to be invariant with the size and eccentricity of 

the constriction. Substituting equation (35) in (36) and 

taking the limit, 

n nb nnx 
2a 2a ....... ATc= 

n n b  n=l 
This temperature drop is not constant for a given constriction 

but a function of the co-ordinate x along the constriction. 

This is caused by the approximate nature of the constriction 

flux distribution used in finding the temperature distribution. 

Consequently, for the evaluation of the thermal constriction 

conductance, a mean constriction temperature drop AT will be 

defined as, 
cm 

a+e+b 
ATcdx ................... (38) 

a+e-b 

Substituting equation (37) in (38) and integrating, one obtains, 

......... (39) 2 nnb sin (-)cos ATcm= 3 3 2 23 

3 16a 
n n b  

Considering one side of the constriction, the thermal constriction 

conductance per unit area of the flow channel is given by, 

Substituting equations (35) and (39) in (40), 
3 2  n b k  (41) .......... u =  .. 

The number of variables in the above equation can be reduced 

by introducing dimensionless numbers U and C defined earlier, 

and a new dimensionless number, eccentricity number E,defined 



as  , 
(42) 

e 
a-b 

E = -  ............................... 
so t h a t  E var ies  between 0 and 1 f o r  a g i v e n  C .  Equat ion  

(41) c a n  now be w r i t t e n  i n  d imens ion le s s  f o r m  by u s i n g  

e q u a t i o n s  ( 2 2 ) ,  (23) and ( 4 2 ) ,  r e s u l t i n g  i n  the f o l l o w i n g  

e x p r e s s i o n ,  

u =  (43) 3 2  n C  .............. 
m 

8 &in  2 (?)cos2 nn 
n3 

n= l  

I t  w i l l  be seen  l a t e r  t h a t  the  a c t u r a l  f l u x  d i s t r i b u t i o n  

a l o n g  the c o n s t r i c t i o n  i s  n o t  uniform b u t  a parabolic distri- 

b u t i o n ,  and t h a t  assumption of a uniform f l u x  d i s t r i b u t i o n  - 
made i n  o b t a i n i n g  the  above r e l a t i o n s h i p  - leads t o  l o w e r  

c o n s t r i c t i o n  conductances .  Hence, the  above r e l a t i o n s h i p  

w i l l  o n l y  be used t o  o b t a i n  the r a t io  of the  conductance 

number fo r  a g i v e n  e c c e n t r i c i t y  t o  t h a t  f o r  z e r o  e c c e n t r i c i t y  

SO t h a t  t h e  errors i n t r o d u c e d  by the uni form f l u x  assumption 

would t e n d  t o  c a n c e l  o u t .  

for no  e c c e n t r i c i t y ,  t h e n  t h e  r a t i o  i s  g i v e n  by, 

If Uo i s  the  conductance  number 

(44) U U 

' 0  'E=o 
- = -  .............................. 

S u b s t i t u t i n g  e q u a t i o n  (43) i n  (44 ) ,  the conductance  r a t io  

becomes, r+ s i n  2 (nnc) 

U n = l  . . . . . . . . . . .  (45) 

uO 

- =  

8 23 s i n  2 \ p ) c o s  nn k ( l + E - E C ) ]  

n = l  

To c a l c u l a t e  the  conductance  number, the  exact s o l u t i o n  for 

Uo g i v e n  b y  e q u a t i o n  (24) should be used  i n  connec t ion  w i t h  



t h e  above equa t ion  f o r  more p r e c i s e  r e s u l t s .  Thus, one obtains, 
x ff 5 s i n  2 (nxc) 

i n  p r e f e r e n c e  t o  equa t ion  ( 4 3 ) .  A s t u d y  of equa t ion  (46) 

shows t h a t  U d e c r e a s e s  wi th  i n c r e a s e  i n  E and r eaches  one-half  

of t h e  v a l u e  f o r  t h e  symmetrical case when E h a s  i t s  maximum 

v a l u e  of u n i t y .  

Experiments 

Two series of experiments  - one f o r  t h e  symmetrical 

c o n s t r i c t i o n s  and one f o r  t h e  e c c e n t r i c  c o n s t r i c t i o n s  - 
w e r e  carried o u t  by  making u s e  of t h e  analogy between h e a t  

and  e l e c t r i c i t y  f lows .  w i th  the  e l e c t r i c a l  ana logy  i t  w a s  

easier t o  reproduce t h e  boundary c o n d i t i o n s  of t h e  models 

u s e d ,  and a l s o  t h e  t i m e  r e q u i r e d  t o  run t h e  experiments  w a s  

g r e a t l y  reduced.  

F i g .  5 shows t h e  specimens used i n  the experiments .  

They w e r e  c u t  from T e l e d e l t o ' s  e l e c t r i c a l  r e s i s t a n c e  paper  

N o .  L-48, i n  s i z e s  2 i n c h e s  wide and 1 3  i n c h e s  long .  Con- 

s t r i c t i o n s  w e r e  c u t  i n  t h e  middle of  t h e  specimens.  The 

specimens for  s tudying  t h e  symmetrical  constrictionsrepresented 

one-half  of t h e  mathematical  model, whi le  t h e  specimens f o r  

s t u d y i n g  the  e c c e n t r i c  c o n s t r i c t i o n s  r e p r e s e n t e d  t h e  complete  

mathemat ica l  model. The c o n s t r i c t i o n  ha l f -wid th  b for  sym- 

metrical case w a s  v a r i e d  between 1/8 i n c h  t o  1-7/8 i n c h e s  i n  
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1/8 inch  s t e p s .  I n  specimens with e c c e n t r i c  c o n s t r i c t i o n s  t h e  

c o n s t r i c t i o n  width 2b w a s  c o n s t a n t  and e q u a l  t o  1/4 inch  w h i l e  

t h e  e c c e n t r i c i t y  d i s t a n c e  e w a s  v a r i e d  between 0 and 7/8 inch  

i n  1/8 inch  s t e p s .  

The exper imenta l  set-up i s  shown i n  F i g .  6 .  It w a s  an 

e lectr ical  c i r c u i t  f o r  m e a s u r i n g  t h e  e lec t r ica l  r e s i s t a n c e  of  

t h e  specimens and c o n s i s t e d  of  a c o n s t a n t  v o l t a g e  D . C .  power 

supply  (0-40 VDC, O - ~ O O O ~ A ) ,  a milliammeter (0-lorn), a h igh  

s e n s i t i v i t y  vo l tme te r  (0-50 V) and a s w i t c h .  Each specimen 

w a s  p a i n t e d  a t  t h e  e n d s  over  a l e n g t h  of 1 / 2  i nch  wi th  l o w  

r e s i s t i v i t y  s i l v e r  p a i n t .  Then t he  specimen w a s  connected 

i n t o  the c i r c u i t  by  means of two s teel  f a s t e n i n g  c l ips  w i t h  

t a p e r i n g  wid ths  a s  shown i n  t h e  f i g u r e .  T h i s  arrangement 

i n s u r e d  a uniform c u r r e n t  d e n s i t y  over  t h e  ends of t h e  spec i -  

mens. The vo l tme te r  p robes  were p l aced  8 i n c h e s  a p a r t  and  

symmetr ica l ly  wi th  r e s p e c t  t o  the  c o n s t r i c t i o n .  

I n  tests f o r  s tudy ing  the symmetrical c o n s t r i c t i o n s , o n l y  

one specimen w a s  used.  

any c o n s t r i c t i o n  and a D.C. p o t e n t i a l  of 20 v o l t s  w a s  a p p l i e d  

a c r o s s  i t s  e n d s .  The vol tmeter  and ammeter r e a d i n g s  w e r e  

t a k e n .  Then a 1/8 i n c h  c u t  was made i n  t h e  middle o f  t he  

specimen i n  o r d e r  t o  p rov ide  a c o n s t r i c t i o n ,  and a m i c a  i n -  

s u l a t i n g  s h e e t  w a s  p u t  i n t o  the  c u t  t o  avoid  any e l e c t r i c a l  

c o n t a c t  a c r o s s  t h e  c u t .  The power w a s  subsequent ly  tu rned  on 

and the r e a d i n g s  w e r e  recorded.  Th i s  procedure  w a s  r e p e a t e d  

f o r  d e c r e a s i n g  c o n s t r i c t i o n  wid ths ,  i n  s t e p s  of 1/8 inch  

d e c r e a s e  a t  a t i m e .  

I t  w a s  p l aced  i n  t h e  c i r c u i t  w i thou t  

I n  t es t s  f o r  s tudy ing  t h e  e c c e n t r i c  c o n s t r i c t i o n s ,  
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different specimens had to be used for different eccen- 

tricities. They were all cut out from the same piece of 

resistance paper in order to obtain a degree of uniformity 

in their properties. In addition to specimens with 1/4 

inch constrictions, one specimen was prepared with no 

constriction. The tests were run as described above. 

Using the voltmeter and ammeter readings, the resis- 

tance of the specimen between voltmeter probes for each 

experiment was calculated. 

no constriction and R the resistance with constriction. 

Let Ro be the resistance with 

Then, considering only one side of the constriction, the 

additional resistance due to the presence of constriction 

is given by, 

Rc= (R-Ro)/2 ......................... (47 1 

The constriction conductance per unit area of the specimen 

cross section is, 
1 

u =  (Specimen C . S . A . )  Rc 

.......................... (48 1 2 
A (R-Ro) u =  

The dimensionless constriction conductance number, by definition, 

becomes, 

u = 2 aup ................................. (49) 

where p is the specimen resistivity. The resistivity p 

can be calculated from a knowledge of no-constriction re- 

sistance as follows, 
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............................ (50 1 p = -  ARO 
L 

where L is the distance between the voltmeter probes. 

Substituting equations (48) and (50) in (49), the conduc- 

tance number becomes, 
4aR0 .............................. u =  L (R-Ro) (51 )  
4aR- .............................. (51 )  

V u =  
L (R-Ro) 

For each test, the conductance and constriction numbers 

were calculated using equations (51) and (23) respectively, 

and when applicable the eccentricity number was calculated 

using equation (42). 

Results and Discussion 

The theoretical and experimental results for the 

symmetrical and eccentric constrictionswill be considered 

separately. 

Symmetrical Constrictions 

The results of the present study, together with those of 

earlier investigators, are plotted in Fig. 7 as the conduc- 

tance number U versus the constriction number C. The ex- 

perimental points are those of the present experiments and 

those of Kouwenhoven and Sackett (4) who used metallic 

specimens and electrical analogy in their experiments. The 

length of their constriction was not zero, but had a finite 

value. In other words, the constriction had a neck. The 

theoretical curves consist of one obtained by Kouwenhoven 

and Sackett (4) and two by Mikic and Rohsenow ( 6 )  and the 

present one. Kouwenhoven and Sackett assumed that only a 
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wedge-like part (made up of sides starting at constriction 

edges and extending to flow channel boundaries by making a 

certain angle 8 with the constriction plane) of the flow 

channel near the constriction w a s  effective in conducting 

"electricity", derived an expression for the wedge resistance 

in terms of the angle 8 (= 7 - half wedge angle), and deter- 

mined the angle 0 from their experiments for the best fit. 

It was found to be 41.3O. 

tially the same model as the one used in the present study 

with the exception that they specified the thermal flux 

distribution at the constriction, and obtained two series 

expressions for two different flux distributions - a uniform 

flux distribution and a parabolic flux distribution. If H 

is the total heat flow rate in the channel, these two flux 

distributions can be expressed by the following expressions 

respectively, 

¶r 

Mikic and Rohsenow used essen- 

H - -  
q1 - 2bt ............................. (52) 

and - ............................. (53) 
q2 - , *  

From Fig. 7 it can be seen that the assumption of uniform 

constriction flux distribution results in lower conductances 

while the assumption of a parabolic flux distribution given 

by equation (53 )  results in higher conductances. In the pre- 

sent theory, the flux distribution at the constriction is not 

pre-specified. The solution obtained applies exactly to the 

case where a symmetry exists with respect to the plane of the 

constriction. using equation (u) it can be shown that the 
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e x a c t  f l u x  d i s t r i b u t i o n  a t  t h e  c o n s t r i c t i o n  w o u l d  be, 

o r  
H  COS(^) 

q =  2a . . . . . . . . . . . . . . . . (  54) 

According t o  t h i s  e q u a t i o n ,  t h e  f l u x  d i s t r i b u t i o n  a t  t h e  

c o n s t r i c t i o n  i s  a f u n c t i o n  of the  channel  dimension as w e l l  

as  t h e  c o n s t r i c t i o n  dimension. 

equa t ion  ( 5 3 )  becomes a special case of  equa t ion  ( 5 4 ) .  

I f  b << a ,  and hence x << a ,  

From F i g .  7 it can  be s e e n  t h a t  t h e r e  i s  a v e r y  good 

The 

also a g r e e  

agreement between t h e  present experiments  and  t h e o r y .  

exper imenta l  p o i n t s  of Kouwenhoven and S a c k e t t  

v e r y  w e l l  w i th  t h e  p r e s e n t  t heo ry ,  w i t h  t h e  excep t ion  of  t h e  

p o i n t  cor responding  t o  C = 0 . 5 .  The d ivergence  t h e r e  could  

have been produced by  t h e  errors in t roduced  d u e  t o  t h e  f i n i t e  

c o n s t r i c t i o n  neck. Any such error should  be large f o r  h igh  

v a l u e s  of C ,  s i n c e  t h e  c o n s t r i c t i o n  neck r e s i s t a n c e  would 

then  be large as  compared wi th  t h e  c o n s t r i c t i o n  ( spreading)  

r e s i s t a n c e .  

o f  Kouwenhoven and S a c k e t t  a re  i n  be t te r  agreement wi th  t h e  

p r e s e n t  t h e o r y  than  t h e i r  t heo ry ,  a l though  t h e  a n g l e  8 of  

t h e i r  t h e o r y  w a s  so s e l e c t e d  as t o  g i v e  t h e  best f i t  w i th  

t h e  exper iments .  

I t  i s  noteworthy t h a t  t h e  exper imenta l  p o i n t s  

E c c e n t r i c  C o n s t r i c t i o n s  

The r e s u l t s  of t h e  present i n v e s t i g a t i o n  and r e f e r e n c e  (5) 

are  p l o t t e d  i n  F i g s .  8 ,  9 and  10 as t h e  r a t i o  of  the conduc- 
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t a n c e  number t o  t h a t  of ze ro  e c c e n t r i c i t y  U/U v e r s u s  t h e  

e c c e n t r i c i t y  number E for t h e  c o n s t r i c t i o n  numbers  of 0 . 1 2 5 ,  
0 

0.08  and 0 .04  r e s p e c t i v e l y .  The exper imenta l  p o i n t s  a r e  

t h o s e  of t h e  p r e s e n t  experiments  (C=O.125) and t h o s e  of 

S a c k e t t  (C=O .08 and C=O. 04) who used m e t a l l i c  specimens 
(5 1 

with  f i n i t e  c o n s t r i c t i o n  necks and e l e c t r i c a l  analogy i n  h i s  

exper iments .  The t h e o r e t i c a l  curves  w e r e  ob ta ined  from t h e  

p r e s e n t  t heo ry  us ing  t h e  a p p r o p r i a t e  v a l u e s  of the c o n s t r i c -  

t i o n  number C and a l s o  from a r e l a t i o n s h i p  d e r i v e d  by S a c k e t t .  

I n  h i s  t h e o r y ,  S a c k e t t  employed the same wedge model d e s c r i b e d  

e a r l i e r  and ob ta ined  a r e l a t i o n s h i p  f o r  the  r a t i o  of t h e  r e s i s -  

t a n c e  i n c r e a s e  due t o  e c c e n t r i c i t y  t o  the  c o n s t r i c t i o n  r e s i s t a n c e  

f o r  z e r o  e c c e n t r i c i t y .  I n  terms of t h e  p r e s e n t  d imens ion le s s  

numbers ,  it can be w r i t t e n  a s ,  

1 h ( Z )  + C-1 . . . . . . . . . . . . . . . * .  (55)  U - =  }- (1+E)  ( l - C )  

S i n c e  a f u n c t i o n  ( t a n g e n t )  of the wedge a n g l e  0 enters  the 

r e s i s t a n c e  (o r  conductance)  r e l a t i o n s h i p  as a p r o d u c t ,  i n  t h e  

conductance r a t i o  U/Uo t h e y  cance l  o u t  and t h e  r a t i o  becomes 

independent  of t h e  wedge a n g l e  s e l e c t e d .  

From F i g s .  8 ,  9 and 1 0 ,  it c a n  be seen t h a t  t h e  agree-  

ment  be tween  t h e  experiments  and b o t h  t h e  t h e o r i e s  i s  good 

a t  o r  nea r  t h e  extreme v a l u e s  of t h e  e c c e n t r i c i t y  number, 

i . e . ,  E=O and E = l .  However, i n  t h e  r e g i o n  be tween t h e  

extreme v a l u e s  of E ,  t h e  p r e s e n t  t h e o r y ' s  agreement wi th  

t h e  exper iments  i s  much bet ter .  
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C o  nc 1 u s ion 

One c l o s e d  form equa t ion  i s  derived for  c a l c u l a t i n g  

t h e  exact the rma l  conductance of two-dimensional symmetrical 

c o n s t r i c t i o n s ,  and an  i n f i n i t e  series e q u a t i o n  for  t h e  thermal  

conductance  of two-dimensional e c c e n t r i c  c o n s t r i c t i o n s .  The 

agreement  between t h e  t h e o r y  and exper iments  for  both cases 

i s  good. T h e r m a l  conductance of two-dimensional c o n s t r i c t i o n s  

i n c r e a s e  w i t h  (a) i n c r e a s e  i n  thermal  c o n d u c t i v i t y ,  (b) in -  

crease c o n s t r i c t i o n  wid th ,  (c) d e c r e a s e  i n  channe l  w id th ,  

and (d) decrease i n  e c c e n t r i c i t y .  
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Nomenc 1 a t u r  e 

Symbols 
A 

a 

B 

b 

C 

E 

e 

H 

i 

k 
L 

I n  
m 

0 

P 

q 
Q 
R 

S 

T 

t 
U 
U 

V 

W 

X 

X 

Cross - sec t iona l  area o f  f l o w  channe l  
H a l f  w id th  of Heat Flow Channel 
Cons t a n  t 
Hal f  wid th  of C o n s t r i c t i o n  
C o n s t r i c t i o n  N u m b e r  (=b/a) 

E c c e n t r i c i t y  N u m b e r  (=e/ (a-b) ) 

E c c e n t r i c i t y  
H e a t  f l ow r a t e  

F 
Thermal c o n d u c t i v i t y  
Flow channel  l eng th :  D i s t a n c e  between 
v o l t m e t e r  probes 
N a t u r a l  l oga r i thm 
P r o p o r t i o n a l i t y  f a c t o r :  Temperature  s l o p e  
away f r o m  c o n s t r i c t i o n  
O r i g i n :  P o i n t  i n  f l o w  channe l  boundary 
P o i n t  i n  f low channe l  boundary 
Thermal f l u x  
P o i n t  i n  f low channe l  boundary 
R e s i s t a n c e ;  Po in t  i n  f l o w  channe l  boundary 
P o i n t  i n  f low channe l  boundary 
Temperature 
F l o w  channel  t h i c k n e s s  
Conductance N u m b e r  (=2au/k)  
Abscissa i n  complex w p l ane :  C o n s t r i c t i o n  

conductance  per  u n i t  area 
O r d i n a t e  i n  complex w p l a n e  
Complex p l a n e  
Abscissa i n  complex Z p l a n e  
Abscissa i n  two-dimensional p l ane :  Abscissa 

i n  complex z p l a n e  

Y O r d i n a t e  i n  complex Z p l a n e  
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z 
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O r d i n a t e  i n  two-dimensional p l a n e ,  O r d i n a t e  
i n  complex z p lane  
C o m p l e x  p l a n e  
C o m p l e x  p l a n e  
D i f f e r e n c e  
Angle 
R e s i s t i v i t y  

C o n s t r i c t i o n  
Mean 
Number 
No-cons t r i c t i o n  
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